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(1)

In a previous paper, the mean equivalent width derivative functions
y(x,p) for bands of randomly arranged Lorentz or Doppler lines with a con-
stant or exponential distribution of line strengths were derived and tabulated,
Here, an extension to the exponential-tailed inverse line strength distribution

(2)

of Malkmus is made. Familiarity on the rcader's part with the contents nf
Ref. 1 is assumed.

The exponential-tailed inverse distribution is an approximation to the
purely inverse distribution but is more mathematically convenient to use than

the latter, at least when employed in conjunction with the Lorentz line shape.

According to this distvibution, the probability that a line in Av has strength S
(0 €£S< =)indS is

| S RS
P(S)dS = —— [exp (-—-)-cxp (-—-]ds (i1
S1ln R SM SM

where SN is the¢ maximum lince strength cut-off and SM/R the minimum cut -ofr
that would apply to the purely inverse distribution. The mean line strength for

the distribution is |

. R-1
>*RIR Smr -
Th:: approximation to the inverse distribution results as R-»>«, In applica- ’

tion, P(S) in the form of Eq. (1) is used to compute the desired rcsult in !
terms of R, and then the limit R-® is taken. In most cases, the funrtional

form of the result is independent of R.

Preceding page blank | |




The equivalent width for an array of Lorentz lines with this strength

(2)

distribution has the simple form

W
s .
= = B fix) 3)

where

fix) = Vi + 2% <1. (-4)

For an array of Doppler lines, the result is

W
D _ £
i S ‘
where
H(x) v ok g In [1 + x ex (-zz)] dz (6)
VE : '

The curve of growth function H(x) has been considered by Malkmus, (3} who
has given a series solution for small x and an asymptotic expansion for
large x.

The equivalent width derivative function y(x,p) for an array of
Lorentz lines and in the Lindquist-Simmons approximation is obtaincd

by using P(S) of Eq. (1) with Eqs. (14) and (18) of Ref. 1. The result

is

o) =22 [ = (1)
L 7
b " (;[[(p2+1)+(p2-1)c059] [1+ax(1+cosB)) [ + bx(1+cosa)

-4.




where a = R/(NR + 1)2 and b = a/R. The limit R » ® yields

_ 2 L3 dsg ;
y{x,p) = 5 f [(p2+.)+(p2_1)cose][1+x(1+c059)] o
0

This result is very similar in form to that obtained in Ref. 1 for the ex-
ponential distribution. The only difference is that the exponert on the
function 1| + x(1 + cosf) in the denominator has been reduced from 2 to

and is clearly a result of the S-’ factor in the distribution function. This
reduction in power is significant since now, when the transformation to

the complex z plane by z = eie is made in order to perform the integration .
of Eq. (8) by the method of residues, the order of the poles at z; and z,
[Eqs. (27¢) and (27d) of Ref. 1] is also reduced from 2 to 1. A straight-
forward evaluation of the residues yields the relatively simple expression

% 15 _2%p(1+x) + (4 +£2) ¥l + 2= (9)
Yoo R S T T ex [ptNTt2x]e

For a homogenecous path (p = 1), Eq. (9) reduces to yix,1) = (1 +2x)'1/2,

which is df(x)/dx as required. Curves of y(x,p) vs x for several values

of p according to Eq. (9) and according to the Curtis- Godson expression

y(x,p) = (2-p) i w L) e (10)

are shown in Fig. 1. The discussion of these curves is similar to that
given for the constant and exponential distribution curves in Ref. 1. The

simplicity in form of the result of Eq. (9) over the results for the constant
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Equivalent Width Derivative Function for an Exponential-
Tailed Inversc Intensity Distribution of Lorentz Lines:

(a) Curtis-Godson Approximation; (b) Lindquist-Simmons
Approximation
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and exponential cases is enhanced by the fact that an inverse distribution
is a more realistic representation for many molecular species than either
of the other two.
When Eqgs. (16) and (18) of Ref. | are used along with P(S) of Eq. 1,
the derivative function for an array of Doppler lines in the Lindquist-Simmons

approximation is found to be (after R » o)

2
o2

y(x,p) = dz. (11)
Tf [l+xexp(pzz)]

Again, this result is similar to that obtained for an exponential distribution
of Doppler lines in Ref. 1. The only change is a reduction in the power of
the denominator from 2 to 1. Note that y(x,1) = dH(x)/cx as required for

a homogeneous path. A series representation for x < 1 is

1 - (_x)n >
ylx,p) = E ——, (12
n=0 1+np2

and a useful approximation (< 0.8%) for p < 0.5 is

1

y(x,p) = ;
vi+x [l-x(pz-l)]l/2

(13)

The most useful representation of y(x,p) is a table of values for a wide
range oi x and p. The entries of Table | were computed by a numerical

integraiion of Eq. (11) in a manner similar to that of Ref., 1 except that




0-3d810%¢ °0 0-J€8ETIT "0 1-396681°0 2-30L£12°0 £€-39162¢ "0 ¥-3€918¢€°0 P-JLPSTITC0 $+30°1
0-39%35¢ 0 0-3d0Ls21°0 1-3%22¢2°0 2-3€800€°0 ¢-dbPees 0 ¥-3096¢L 0 ¥-3¢60¢€2°0 ¥+d0°S
0-381LLE°0 0-d8SE¥I 0 1-308€0€ "0 2-389%L¥ 0 2-3J2€101°0 €-39L9L1°0 P-3reLLso ¥+30 "2
0-316¥%6¢ "0 0-3906ST 0 1-322¢L€ "0 2-3€92.9°0 Z-3JE0S91°0 €-3L90%€ "0 €-d9PSIT "0 ¥P+d0 "1
0-306€1¥°0 0-30S9L1°0 1-31L6S¥°0 2-30%9S6°0 2-3LE692°0 £€-38S¥59 "0 £€-3d880€2°0 ¢+d0°S
0-3921%¥°0 0-361€02°0 1-3€5809 "0 1-322¢S1°0 2-382915°0 2-3d2¢ebstl o0 £€-300LL5°0 £+3d0 "2
0-396¢9% 0 0-389922°0 [-3695SL°0 1-326612°0 2-3¥6s¥8°0 2-389¢62°0 ¢-dEESIT 0 €+30°1
0-3€L88% "0 0-389¢€52°0 [-3LL2%6°0 1-360L1€°0 [-JI1L8ET 0 2-d99555°0 Z2-38¢€0¢€2°0 2+d0 S
0-39€925°0 0-311962°0 0-dS€L21°0 T1-JLBLIS O 1-36%992°0 1-365L21°0 ¢-dP8ELS "0 <¢+30 "2
0-32L9SsS 0 0-369%¢€¢ "0 0-320191°0 I1-3¥8ESL O [-32¥%SEV°0 1-32%9¢2°0 1-380%11°0 ¢+d0°1
0-311265°0 0-39%08¢ 0 0-306%02°0 0+3S6601°0 1-d82.0L2°0 I-3eL1e%°0 1-3¥$s22°0 1+30°S
0-3%99%9 0 0-3905s¥%°0 0-d11¥#82°0 0+3€S081°0 0+dS61ET1°0 1-386526 0 1-392¥%5°0 1+30°2
0-306%69 '0 0-32%%2S 0 0-30Ss¥9¢ 0 0+398652°0 0+de¥c02°0 0+d¢£88ST 0 0+310€0T1°0 1+30°1
0-32¢6¥%L 0 0-38%509 "0 0-32s+9% 0 0+3€6S9€°0 0+d2811¢°0 0+ds¥652°0 0+d22981°0 0+30°Ss
0-369928 °0 0-3¥¥¥eL "0 0-3L5619°0 0+3001+S°0 0+dsS¥6¥ "0 0+3¥9s¥¥ "0 0+36€29¢€°0 0+30 2
0-386188 °0 0-32¢118°0 O-J90LEL0 0+3LE6L9°0 0+326¢€%9 °0 0+306%09 °0 0+3690€S °0 0+30°1
0-326926 °0 0-3€L288 °0 0-J€SS€8°0 0+366L6L°0 0+3eeEbLL 0 0+30SL¥L 0 0+38%269 °0 LG (0 B
0-309596 °0 0-3%9%%6 0 0-300226 °0 0+3dL9€06°0 0+306168°0 0+3828.8°0 0+3898%8 0 1-30°2
0-389186 ‘0 0-3050L6 "0 0-39€856 0 0+39+8%6 0 0+3202%6 0 0+309%€6 0 J+JE0816 °0 I-30°1
0-3€S066 "0 0-3%.¥86 0 0-3¥¥8L6°0 0+362¢L6°0 0+3d56696 0 0+3€£0996 °0 0+d€2L56 0 2-30°S
0-3€1966 0 0-3LL€66°0 0-3F61166°0 0+3L0686°0 0+30LL86°0 0+380986 "0 0+d¢%286 0 2-30°2
0-350866 ‘0 0-398966 0 0-395566 "0 0+30S¥66°0 0+308€66 °0 0+366266 °0 0+d¥1166 °0 ¢-30°T1
0+300°S 0+300 "¢ 0+300 "2 0+30S °1 0+3S2°1 0+300 °1 1-300°S -

uoyewrxoxddy suourwuig-38inbpul ayy ur saury a91ddo@ jo uoynqriystg Ajrsusjug
9813AuU] p3[te] -Terjuduodxy Ue I0j UOWIOUNJ IAIIeAlIT YIPIM IUafealnby

I @2I1qel

-i8%




a Gaussian quadrature formula was used in place of the Wedle formula.
The values are accurate to | part in 105. Curves of y(x,p) according to

the Lindquist-Simmons result [Eq. (11)] and the Curtis- Godson expression

dH(x) H(x) o~
X

y(x,p) = (Z-P)T +(p-1)

arc displayed in Fig. 2.

For hoth the Lorentz and Doppler cascs, the trascition from the small
x to the large x behavior of y(x,p) is more gradual for the modified inverse
distribution than for the exponential distribution (compare Fig. 1 of this
paper with Fig. 2 of Ref. 1 for the Lorentz case and Fig. 2 of this paper
with Fig. 4 of Ref. | for the Doppler case). This effect is due to the greater
weight placed on weak lines by the inverse distribution than by the expo-

nential distribution.
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Tig. 2. Equivalent Width Derivative Function for an Exponential -
Tailed Inverse Intensity Distribution of Doppler Lines:
(a) Curtis-Godson Approximation; (b) Lindquist-Simmons
Approximation
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting
experimental ard theoretlcal investigations necessary for the evaluation and
application of scientific advances to new military concepts and systems., Ver-
satility and flexibility have been developed to a high degree by the laboratory
personnel in dealing with the many problems encountered in the nation's rapidly
developing space and missile systems. Expertise in the latest scientific devel-
opments is vital to the accomplishment of tasks related to these problems, The
laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry aerodynamics, heat trans-

fer, reentry physics, chemical kinetics, structural mechanics, flight dynamics,
atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Aumospheric reactions and atmos-
pheric optics, chemical reactions in polluted atmospheres, chemical reactions
of excited species ir rocket plumes, chemical thermodynamics, plasma and
laser-induced reacticns, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo-
sensltive materials and sensors, high precision laser ranging, and the appli-
cation of physics and chemistry to problems of lav. enforcement and biomedicine.

Electronics Research Laboratory: Electron-agnetic theory, devices, and
propagation phenomena, including plasma electromaguetics: quantum electronics,
lasers, and electro-optics; communication sciences, applied electronics, semi-
conducting, superconducting, and crystal device physics, optical and acoustical
Imaging; atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal
matrix composites and new forms of carbon, test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronic components in
nuclear weapons environment; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals.

Space Physics Laboratory: Atmospheric and ionospheric physics, radia-
tion from the atmosphere, density and composition of the atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, studies of solar magnetic
fields; space astronomy, x-ray astronomy. the effects of nuclear explosions,
magnetic storms, and solar activity on the earth's atmosphere, ionosphere, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-
tions in space on space systems,
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